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Abstract: The process performance index (PPI) can be a simple metric to connect the conforming rate
of products. The properties of the PPI have been well studied for the normal distribution and other
widely used lifetime distributions, such as the Weibull, Gamma, and Pareto distributions. Assume
that the quality characteristic of product follows power-normal distribution. Statistical inference
procedures for the PPI are established. The maximum likelihood estimation method for the model
parameters and PPI is investigated and the exact Fisher information matrix is derived. We discuss the
drawbacks of using the exact Fisher information matrix to obtain the confidence interval of the model
parameters. The parametric bootstrap percentile and bootstrap bias-corrected percentile methods
are proposed to obtain approximate confidence intervals for the model parameters and PPI. Monte
Carlo simulations are conducted to evaluate the performance of the proposed methods. One example
about the flow width of the resist in the hard-bake process is used for illustration.

Keywords: bootstrap methods; maximum likelihood estimation; Monte Carlo simulation; process
performance index; power-normal distribution; quality control

1. Introduction

Control chart methods have been widely used as an online tool for process monitoring.
After confirming the process is in control, practitioners can conduct a process capability
analysis to determine how well the output of the process meets the expectations of customer,
requirements, and specifications. The process capability analysis methods aim to continu-
ously monitor the quality of process via using the capability indices for assuring that the
products are consistent with the specifications, supplying information on product design
and process quality improvement. Moreover, the results of process capability analysis can
be the basis for reducing the cost due to product failures, see [1].

Among widely used process capability indices, the process performance index (PPI)
can provide a close connection to the conforming rate of P(X > L), where X is the quality
variable and L is a given threshold about the lower quality limit. Ref. [2] recommended
using the PPI to assess the quality of products under the normality assumption. The
inferences of the PPI for the lifetime distributions with different censoring schemes also
have been widely studied. Based on using a type-II censoring scheme, ref. [3] obtained
the maximum likelihood estimate (MLE) of the PPI for the Pareto distribution. Moreover,
they also proposed a hypothesis testing method to test PPI. Ref. [4] proposed an inference
procedure to obtain the uniformly minimum variance unbiased estimate of PPI and con-
ducted a hypothesis testing method for the two-parameter exponential distribution based
on type-II censored samples. Ref. [5] proposed fourteen different estimates of the PPI for
the two-parameter exponential distribution with a multiple type-II censoring scheme. Then,
three estimates are screened from the pool to develop hypothesis testing procedures for
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testing PPL. Using a type-II censoring scheme, ref. [6] studied the statistical inference proce-
dure for the PPI when the lifetimes follow an exponential distribution. Ref. [7] proposed
some optimal statistical inferential procedures for the PPI based on progressively type-II
censored samples for the Burr type XII distribution. Ref. [8] used generalized order statis-
tics to conduct statistical inferences for the PPI when the lifetimes follow an exponential
distribution. Ref. [9] proposed Bayesian estimation methods to assess the PPI when the
progressive type-II censored samples are collected from Rayleigh distribution. Ref. [10]
proposed parameter estimation methods to estimate the PPI based on progressive Weibull
first-failure censored samples.

The power-normal family of distributions was first noted by [11]. They investigated
the statistical properties of power-normal distribution and gave expressions for the mo-
ments in terms of infinite series. Ref. [12] studied the maximum likelihood estimation
method to estimate the model parameters for the normalized power-normal distribution.
Ref. [13] mentioned some applications about using the power-normal distribution. Ref. [14]
presented another form of the power-normal distribution based on using inverse Box-Cox
power transformation and obtained the expressions of the mean and variance of the power-
normal distribution. Ref. [15] studied a truncated power-normal distribution that has the
truncation point of zero. They studied the probabilistic properties along with the maximum
likelihood and moments estimation methods. Ref. [16] used delta method to develop
several estimation methods to obtain the confidence intervals of the percentiles of power-
normal distribution. Ref. [17] investigated the closeness of power-normal distribution and
skew-normal distribution and proposed estimation procedures to characterize skewed data
via using the power-normal distribution. Ref. [18] evaluated the asymptotic influence of
the truncation on the estimation of the parameters of the power-normal distribution via
using an intensive simulation study.

The power-normal distribution is a generalized version of normal distribution. More-
over, the power-normal distribution can be a generalized family and more competitive
than skew-normal distribution to characterize real data if the skewness parameter in the
skew-normal distribution is small. In this study, we aim to propose a reliable estimation
process to evaluate the PPI in quality control applications. The proposed estimation process
can be used to evaluate the PPI whatever the data follow a symmetric or asymmetric
distribution. Moreover, the new estimation process can involve the estimation method
based on normality assumption as special case.

We investigate the maximum likelihood estimation method and the confidence interval
method based on using the exact Fisher information matrix. Moreover, we also study the
weakness of using an exact Fisher information matrix to obtain the confidence intervals of
the power-normal distribution parameters. Two bootstrap methods are used to obtain the
approximate confidence interval of PPI when the quality characteristic follows a power-
normal distribution.

2. Motivation and Organization

The probability density function (PDF) and cumulative density function (CDF) of the
power-normal are defined, respectively, by

v [e(v=\]" (v—¢
f(yl@))—g{@((fﬂ ¢<0>,y€R,C€R,7>O,a>O, (1)
and
E(y|®) = [@(tgﬂy, yEREERy>0,0>0, 2)

where ® = ({,,0), and ¢ is the location parameter, ¢ is the scale parameter and v is
the shape parameter. When y = 1, the power-normal distribution reduces to the normal
distribution with the mean ¢ and standard deviation . The power-normal distribution is
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left-skewed if 0 < ¢ < 1 and right-skewed if v > 1. The power-normal distribution can be
an alternative to the skew-normal distribution proposed by Azzalini [19].
Process capability analysis methods often are used to evaluate whether the quality of
products meets customers’ requirements. Define the PPI by
¢—L

L= —. 3)

If the quality variable X follows a normal distribution, ¢ and ¢ are respectively the
mean and standard deviation of X. Throughout this article, a product is labeled as satis-
factory if the condition of {X > L} is satisfied. The probability of a satisfactory product is
known as the conforming rate and defined by

nL=P{X >L}. (4)

There is a connection between the conforming rate #;, and C; when X follows a
parametric distribution. This fact implies that the statistical inference for the conforming
rate may be used as well for the C, and vice versa.

In the real world, the distribution of quality variables could not have a symmetric
shape. Hence, the existing inference methods based on the normality assumption for Cr.
become not available. It is important to develop new inference methods to assess the quality
of Cy, for a wide range of distribution shapes and the new method can also be applied to
the normal distribution. The skew-normal distribution proposed by Azzalini [19] can be an
option to characterize process data. However, the skew-normal distribution is not the best
model in terms of capturing high degrees of kurtosis. The quality of the estimation results
based on the skew-normal distribution is not stable if the skewness parameter is close to
zero. In order to overcome the weakness of the skew-normal distribution for the inferences
about C;. We suggest replacing the skew-normal distribution with the power-normal
distribution to develop new inference methods for C;.

The power-normal distribution is available to characterize the data whose distribution
has a higher degree of kurtosis than the normal and skew-normal distributions but has a
narrow range of asymmetry. Based on the aforementioned reasons, we aim to develop a
maximum likelihood estimation procedure for the power-normal distribution and inves-
tigate the weakness of using an exact Fisher information matrix to obtain the confidence
intervals of the model parameters and Cr. Moreover, two parametric bootstrapping pro-
cedures are developed in this study to obtain approximate confidence intervals of the
power-normal distribution parameters and Cr.

The Fisher information matrix and bootstrap methods are two extensively used meth-
ods to obtain approximate confidence intervals of the model parameters. If the exact
Fisher information matrix can be obtained, the delta method and exact Fisher information
matrix can be used to obtain an approximate confidence interval of a function of model
parameters. If the exact Fisher information matrix is not available, the observed Fisher
information matrix can be used instead. Because the obtained approximate confidence
interval via using the delta method and Fisher information matrix is based on the Central
Limit Theorem, the obtained approximate confidence interval could be conservative with
an over-or under-estimated coverage probability.

The bootstrap is a computer-based method which can replace the delta method to
obtain an approximate confidence interval of a function of model parameters. The bootstrap
often is used to derive an estimate of standard error or confidence interval of a complex
estimator of the interest parameter. In quality control or reliability applications, bootstrap
has been extensively used to obtain the approximate confidence interval of a complex
estimator of the interest parameter. Among all bootstrap methods, the parametric bootstrap
percentile (PBP) and bias-corrected percentile (BCP) methods are two popular methods to
obtain the approximate confidence interval of a complex estimator of the interest parameter.
Comprehensive processes to construct bootstrap confidence intervals can be found in [20].
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Quality control and reliability applications based on using bootstrap methods can be found
in [21-24].

The rest of this paper is organized as follows: In Section 3, the maximum likelihood
estimation procedure is proposed and the exact Fisher information matrix is derived. More-
over, the steps to implement the PBP and BCP methods are developed. We also study the
drawbacks of using the exact Fisher information matrix to obtain an approximate confi-
dence interval for the model parameters and PPI. In order to evaluate the performance of
the proposed estimation methods, an intensive Monte Carlo simulation study is conducted
in Section 4 to evaluate the performance of the proposed maximum likelihood estimation
method in terms of the metrics of bias and mean squared error (MSE). The performance of
the interval inference methods is evaluated based on the coverage probability (CR) for the
target parameter. In Section 5, the applications of the proposed estimation procedures are
illustrated with one real example about the flow width of the resist in a hard-bake process.
Finally, some concluding remarks are given in Section 6.

3. The Inference Methods
3.1. Maximum Likelihood Estimation Method
Based on the power-normal distribution defined by Equations (1) and (2), the maxi-

mum likelihood estimation procedure is proposed in this section. Let X = %, the mth
moment of Y can be obtained by

E[Y™] :E}( ) lom=TE[xm=1], (5)

where X has the PDF
f(x|y) = v[®@(x)]" '¢(x), x € R.

The PDF of y; can be presented by

sle) = (o (1)) o (B E) = Tota gt =12,

Lety = y(y1,Y2, - - . Yn) denote a random sample of y’s. The likelihood function and
log-likelihood function of y can be presented by

L©®ly) Hf vil®) = 1j1<¢<xi>)7*111¢<xi>, (6)
where x; = y’f;é and
¢ = log(L(Oly))
= n(log(y) —log(c v—1) Zlog
+ilog<¢<xi>>. ”

The first and second derivatives of £ with respect to ¢, o and <y can be obtained by

of  1|& 1
afgzg i;xi_('Y_l)z (8)

i=1

Jelpos

14 n n
a7~ i:leog(CP(xi)), )
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ol 1| X
ag:U[;xg_n—W—l)g"@"’(if))], (10)

201 L xip(xi) | 9P (x)
o = az{””””;{ o) ) § o
902 n
R .
92/ 1 n n 2xl—xl X
=7 = 2{3;x3n(71){_1( q)(xl))fl’( )
L (x;)
L))
0 1 p(x)
oy _51; @ (x;)’ (49
920 1. & n(x7 = 1)op(x:)
S = oY x4 (y—1 i
acac 2{ l;x o )E o (x;)
& xz(l)z(xz)
+Z; ®(x,) } (15)
and
o 1 & xp(x)
9790~ 7 D) (16)

Let g—é =0, % =0,and % = 0, we can obtain the following three likelihood equations:

(1)} P)
Z; i= (7 1);©(xi), (17)
g 2 =nt(y— 1)2 x&)"’((x’:’)) (18)

(19)

Let x(©) be a differentiable function of ®. Denote the gradient of x(®) by Vk(®) =

(a%(?) , aKa(f) ), ag(v@ ) ) . The MLE of x(®) can be denoted by x(®) though using the invariance

property of MLE. For simplicity, let # = x(©) and let V«(©) be the plug-in version of
V«(®). An approximate confidence interval of x(®) can be obtained using Theorem 1.

Theorem 1. Let I(©®) denote the exact Fisher information matrix. Based on Equations (8)—(16)
and delta method, the asymptotic distribution of & can be obtained by

(a)
R - N(@, (w(@))(z(@))*l(v;c(@)f) as 1 — co.

(b) The approximate confidence interval of Cy, can be presented by

N N T
¢ — N(CL, (;,o,—g(;L> (1(@))‘1 <}7,0,—5;2L> ) as n — oo,
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where Cy, is the PPI of the power-normal distribution and defined by
¢—L

o

CL =

The approximate (1 — a)% confidence interval of C, can be obtained by

~ o T
A 1 —L an—1(1 —L
CL :l:zzx/Z X \l (a_lol 756—2 > (I(®)) ! (&/O/ é@_z> . (20)

Proof. (a) TheMLEs of ¢, o and 7y can be the simultaneous solutions of the Equations (17)—(19).

Denote them by & o and 4, respectively, and let 0= (6, 4,0). Let 6117 = —E(%),
o = —E(E‘%), 033 = —E(%), 0 = dn = —E(%), 03 = 31 = —E(%),
03 = 030 = —E(%), We obtain the following results:
_n _ P(X) ¢*(X)
511—02{1+(')/ 1)[E(X¢(X))+E<CD2(X) , (21)
n
2= 3
n X
033 = 02{315()(2) —1—(y—1) [E ((zx — X3)i((x)))
2
_ 2 $°(X)
f(*50) | =
_np(¢(X)
sn="2E(550 ) @9

S13 = :Z{ZE(X) +(y—1) [E((XZ - 1) i((};())) +E (Xiz((}}?)ﬂ } (25)
and
5y3 = ZE(X(P(X)) (26)

Hence, the exact Fisher information matrix can be presented by

i1 O 13
I(©) = |01 62 03]

d31 03 033

Because I(©) contains unknown parameters, the plug-in version of I(®), denoted by
1(®), can be used to find the asymptotic distribution of ®. We can be shown that

O — N(@, (1(@))_1) asn — oo,

The delta method indicates that the asymptotic mean and variance of « are x(®) and

Vk(0)(1(0)) ! (Vk(©))T, respectively. Moreover, using Central limit theorem, we
can show that the asymptotic distribution of % is normal. Hence, we can show that

& N(K(@), (w(@))(z(@))‘%w(@)ﬂ) as 1 — co.
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We prove Theorem 1a.
(b) Using invariant property, the MLE of C}, can be obtained by
. E-L
CL= . 27
L 5 (27)

The gradient of C is VC = (aa%, aa%, aa%) = (%,0, —%) Moreover, we can

show that the asymptotical variance of C; is

A N T
1 é-L w11 E-L

and the asymptotic distribution of C; can be obtained by

~ A T
CL— N(CL, (;,0,—6(;) (1) (;,o,—‘g;f) ) asn — oo,

Then, the approximate (1 — a)% confidence interval of C; can be obtained by

N A T
CL+ 240 X J (;,0,5;2L> (1(@)))’l (;,O,C(;L> ) (28)

We prove Theorem 1b. [

If ¥ = 1, C reduces to the PPI of the normal distribution. Hence, the Cy is a gen-
eralized PPI which can be used as a performance metric under skew distributions and
including the normal distribution as special case.

3.2. Bootstrap Methods

Parametric bootstrap methods are other widely used methods to obtain an approxi-
mate (1 — a) x 100% confidence interval of «(®). In this study, the parametric bootstrap
methods of PBP and BCP are developed to obtain the approximate (1 — ) x 100% confi-
dence interval of x(©). Readers can see [20] for comprehensive introductions to the PBP
and BCP methods. The procedures to implement the PBP and BCP methods are presented
as follows:

The PBP method

The (1 — a)% bootstrap confidence interval of «(®) based on the PBP method can be
obtained based on the following steps:

Step 1: Obtain the MLE of ® based on a large sample of size n and denote the MLE by ©.

Step2: Generate a bootstrap sample of size n from the power-normal distribution with
parameter © = ©.

Step 3: Implement Step 2 B times, where B is a large number and denote all obtained MLE
of @by ©%,j=1,2,---,B. Let &f = #(0;),j = 1,2, -+, B be the MLE of x(®)
based on B bootstrap samples.

Step4: Construct the empirical distribution of & based on the bootstrap samples
{k]’-‘, j=1,2,---,B} and denote the empirical distribution of # by G}. The (1 —a)%
bootstrap confidence interval of x(®) can be obtained by (g, /2, §1-a/2), Where g,
is the pth quantile function of G} such that G} (gp) = p for0 < p < 1.

The BCP method

The (1 — a)% bootstrap confidence interval of x(©) based on the BCP method can be
obtained based on the following steps:
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Step 1: Implement Step 1 to Step 3 of the PBP method to obtain the bootstrap sample of
kY =#(07),j=12,...,B
Step 2: The approximate (1 — &) confidence interval of x(®) can be obtained by

((62) 1 @lza/0 + 207 (GL(R))], (G2) ' @lz1 2 + 2071 (G1 (7))

3.3. Discussions

From Theorem 1, we find that the approximate confidence interval of C in Theorem 1b

is available only if the exact Fisher information matrix, I(®), in Theorem 1a exists. The

2
)
013 exists only if y > 3. Because 1 is an unknown parameter in practical applications, this
limitation makes the use of I(©) difficult. Considering the sampling error for estimating
model parameters, we could obtain an MLE of 7 smaller than 3 if the value of -y is larger
but close to 3. If ¥ < 3, I(®) cannot be obtained. The existence of I(®) causes a difficulty
to use the approximate confidence interval that is obtained via using Theorem 1. Based
on the aforementioned reasons, we suggest using the two proposed parametric bootstrap
methods to obtain an approximate confidence interval for the model parameters and Cy in
practical applications.

The power-normal distribution can be a generalized version of normal distribution. In
literature, some extended versions of the power-normal distribution have been proposed.
For example, the log-power-normal distribution and truncated-power-normal distribution.
Hence, these extended versions have a more complicated function form than the power-
normal distribution and contain more parameters to characterize data. The extended
versions of the power-normal distribution have a merit with a complicated shape to model
data. However, the parameter estimation could be a problem. If a distribution contains two
or more shape (or skewness) parameters, the model identification could be a problem for
practical use. Two distributions with different combinations of plug-in estimates can fit the
same data set well.

In our experience, two different distributions could result in different tail percentiles.
Percentiles are important for quality control or reliability applications. Hence, the com-
plexity of the model form and obtaining reliable parameter estimation results are trade-off.
To avoid an over-fitting problem, we suggest using a generalized version of normal dis-
tribution to model data and such generalized version can include the normal distribution
as special case. Based on the purpose, the skew-normal distribution and power-normal
distribution are competitive. The power-normal distribution is available to characterize the
data whose distribution has a higher degree of kurtosis than the normal and skew-normal
distributions but has a narrow range of asymmetry. Moreover, the estimation results are
less reliable based on the skew-normal distribution if its skewness parameter is small.
That is, if the distribution of data is slightly asymmetric, the estimation results based on
skew-normal distribution could be less reliable if the sample size is not large enough. In
this study, we recommend using power-normal distribution and the developed inference
processes to characterize data.

existence of I(®) depends on the MLE of +y. For example, the component of E (X

4. Monte Carlo Simulations

In this section, Monte Carlo simulations are conducted to evaluate the performance of
the proposed maximum likelihood estimation method and the two parametric bootstrap
methods. Because the power-normal distribution reduces to normal distribution when
v = 1, the first goal of the design of the Monte Carlo simulation is to study the estimation
performance of the MLE of 7y and its impacts on the estimation performance of the MLEs
of the location and scale parameters in the power-normal distribution. Based on the
aforementioned purposes, the Monte Carlo simulations are conducted with the parameters
of { =3,0 =1and y =0.5,1,2 and 5. The estimation performance is evaluated in terms of
the scale-free metrics based on the bias and MSE. Define the bias and MSE of a parameter



Mathematics 2022, 10, 35

9of 14

of § by Bias = %YM, (§; — 0) and MSE = 4 Y M. (8; — 6)?, respectively, where 0; is the
MLE of 6 for the i iteration, i = 1,2,--- ,M and M is a big positive integer. The relative
bias and the relative square root of the MSE of  can be defined respectively by

and

rBias = — x Bias

SR

rsqMSE = % x vV MSE.

In this study, 8 can be ¢, v,  and C;. We use M = 10,000 iterations to evaluate the

values of rBias and rsqMSE. Moreover, we also evaluate the number of any absolute MLEs
of ¢, v and o larger than ten times of their true parameters in 10,000 simulation runs,
and denote this obtained number by N,. All simulation results are reported in Table 1.
N, can be an indicator to evaluate the frequency of the bad-quality MLEs in 10,000 runs
of simulation.

Table 1. The rBias and rsqMSEs of the MLEs of ¢, ¢, o and Cr.

rBias rsqMSE
¥ n ¢ 4 & (e ¢ 4 & (e N,
0.5 100 0.2096 —0.5994 —1.2269 1.1320 0.7258 33.0214 2.0278 2.2301 240
150 0.2390 —2.6064 —1.2264 0.8151 0.6571 13.5733 2.0054 1.4548 70
200 0.2434 —2.9725 —1.2176 0.6825 0.6370 4.8467 1.9865 1.1086 25
250 0.2475 —3.1008 —1.2152 0.6299 0.6251 4.5750 1.9792 0.9567 11
300 0.2462 —3.1453 —1.2109 0.5905 0.6134 4.5548 1.9772 0.8447 8
500 0.2544 —3.2785 —1.2104 0.5447 0.5987 4.5559 1.9692 0.7335 0
1 100 0.2712 3.0260 —0.9345 0.8341 0.6417 26.4524 1.4044 2.2745 511
150 0.3016 0.4983 —0.9383 0.5427 0.5659 14.5790 1.3798 1.3561 212
200 0.3241 —0.2356 —0.9473 0.4684 0.5425 4.6232 1.3725 0.9842 94
250 0.3276 —0.4745 —0.9443 0.4186 0.5235 3.5571 1.3619 0.8349 33
300 0.3337 —0.6071 —0.9467 0.3985 0.5155 1.8356 1.3588 0.7632 26
500 0.3420 —0.7792 —0.9463 0.3538 0.4969 1.4421 1.3504 0.6235 2
2 100 0.2551 7.9755 —0.8761 0.2849 0.6422 45.1581 1.2072 2.4265 1126
150 0.2928 2.6819 —0.8825 0.0267 0.5485 16.8547 1.1900 1.4013 652
200 0.3273 1.2177 —0.9007 —0.0075 0.5182 7.0036 1.1902 1.0722 402
250 0.3281 0.8255 —0.8962 —0.0736 0.4936 4.0130 1.1793 0.8994 261
300 0.3342 0.5714 —0.8965 —0.0970 0.4778 2.4949 1.1746 0.8284 159
500 0.3510 0.2852 —0.9045 —0.1194 0.4655 1.1307 1.1691 0.6901 39
5 100 0.0847 10.9240 —1.3410 —2.9791 0.8151 46.2667 2.2549 6.9958 2210
150 0.1213 5.6620 —1.3496 —3.3633 0.7422 26.0057 2.2591 5.8119 1808
200 0.1431 3.1266 —1.3552 —3.4987 0.7058 12.2067 2.2567 5.4787 1470
250 0.1549 2.4277 —1.3586 —3.5532 0.6930 10.3026 2.2525 5.4107 1265
300 0.1595 1.8131 —1.3582 —3.6083 0.6773 6.7543 2.2513 5.3588 1164
500 0.1811 1.0443 —1.3662 —3.6470 0.6558 2.8148 2.2494 5.2462 721

From Table 1 we obtain the following results:

When the value of v is small (7 = 0.5) or large (y = 5), the rBias and rsqMSE are
larger than that in the cells of v = 1 and 2 even the sample size increases to 500. These
findings indicate that we may consider a bias-correction method to obtain a more
reliable MLE of v, and then we can obtain the more reliable MLEs of ¢ and ¢. The
bias-correction maximum likelihood estimation method is another issue and can be a
future study.

Based on the values of N, in Table 1, we find that the performance of the maxi-
mum likelihood estimation method get worse as the value of the shape parameter
is increased when the sample size is small. The findings imply that the maximum
likelihood estimation method could not be a satisfactory method to obtain the reliable
estimates of the model parameters if the power-normal distribution has a big shape
parameter when the sample size is small. A big sample of 500 or more is requested to
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obtain the reliable MLEs of the model parameters if the power-normal distribution has
a big shape parameter. For the power-normal distribution with a small to moderate
shape parameter, a sample of 250 or 300 is enough to obtain the reliable MLEs of
model parameters.

The MLE of ¢ underestimates its true value. The bias of ¢ and 4 is larger than the bias
of 5 Because C; is a function of ¢ and o, the bias of C; could be inflated due to the
underestimated 0. We also find that the bias of & cannot be significantly reduced when
the sample size increases. How to reduce the bias of the MLE of ¢ can be a future study.
The ¢ can be a good estimate of & in terms of the rBise and rsqMSE in Table 1.

Some cells of rBias and rsqMSE for ¢, 4 and & could not decrease as the sample size
increases. Carefully check these cells, we can find these values are close. The slightly
differences are caused by random error in simulation. We can treat them at a close
level of rBias and rsqMSE.

The MLE C; is a plug-in function of the MLEs of & and o. Hence, the estimation
performance of C; depends on the quality of & and &. Cy can be a good estimate of C.
for the power-normal distribution if its shape parameter is small to moderate.
Because the power-normal distribution with a small to moderate shape parameter can
characterize a wide range of real skewed data. The maximum likelihood method can
be a potential estimation method to obtain reliable estimates of model parameters.

The second goal of the design of the Monte Carlo Simulations is to evaluate the

performance of the two proposed parametric bootstrap methods of PBP and BCP based
on the power-normal distribution with { = 3, ¢ = 1 and y = 2. The parametric bootstrap
methods of PBP and BCP are implemented 1000 iterations to evaluate their CR for the
model parameters and C; with the nominal confidence level of 95%. In each iteration, a
bootstrap sample with B = 10,000 estimates is obtained to establish the bootstrap empirical
distribution for each iteration. Then, the bootstrap confidence intervals are established. All
estimation results are summarized in Figure 1. All obtained CR estimates are close with a
range from 0.94 to 0.963, and we can see that the numerical CRs are close to their nominal
values to estimate all parameters if the sample size reaches 100 or more.
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Figure 1. The CRs for estimating ¢, 7, 0, and Cy, through using the PBP and BCP methods. The
dashed line is the nominal value.
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5. Example

A data set with 185 flow width measurements of the resist in a hard-bark process is
used to demonstrate the utility of the proposed methods. In semiconductor manufacturing,
hard-bake is used in conjunction with photo-lithography and the flow width of resist is an
important quality variable for maintaining the photo-lithograph process at a good quality.
This data set was taken from the first 37 Phase I in-control samples in Chapter 6 of [2].
Ref. [2] used normality assumption to establish Shewhart ¥-R control charts for monitoring
the production process of integrated circuits. We remove the samples after sample 37 from
this data set due to the process looks gradually moving to an out-of-control state since
sample 38. The histogram based on the sample with all 185 observations is displayed in
Figure 2.

The design of the data analysis contains two stages. In Stage 1, the in-control Phase I
sample with 185 observations of flow width is used for modeling. The maximum likelihood
estimation method in Section 3.1 is used to obtain the MLE of the model parameters.
Moreover, the PBP and BCP methods in Section 3.2 are used to obtain an approximate
confidence interval of Cy. In Stage 2, we investigate the impact of sample size on the
reduction of sampling error. Hence, data are regenerated in Stage 2 based on the model
that is established in Stage 1 to study the lengths of the approximate bootstrap confidence
intervals of C;.

Stage 1: Modeling: Using the proposed maximum likelihood estimation in Section 3.1 with
the initial values of &y, 790 = 1 and 0y, where ¢y and oy are the sample mean and
standard deviation of the data set, respectively. Based on the simulation results in
Table 1, a random sample of n = 185 should be okay to obtain reliable MLEs of the
model parameters when 7 is close to 1. We obtain the MLEs & =1.5282, 4 = 0.8015
and ¢ = 0.1197 for the power-normal distribution. The dashed line in Figure 2 is
the density curve of the power-normal distribution based on the obtained MLEs.
We can see that the power-normal distribution has a good fitting to this data set.

3.0

1.0

[ I I I |
1.0 12 14 1.6 1.8

Flow width of the resist in the hard-bake process

Figure 2. The histogram of the flow width data in Example 1.

The quantile-to-quantile plot based on the flow width data and the power-normal
distribution is presented in Figure 3. All the dots are plotted around the straight
line. Hence, the quantile-to-quantile plot indicates that the power-normal distribu-
tion can be the right model to characterize the flow width data. The test statistic of
the Kolmogorov-Smirnov test based on the flow width data and power-normal
distribution is 0.062 with the p-value of 0.2917. Based on the Kolmogorov-Smirnov
test, we conclude that the power-normal distribution can be a good model to char-
acterize the flow width data. Because the MLE of the shape parameter, § = 0.8015,
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is closed to 1, this estimate indicates that the distribution of the flow width data
has a slightly skewed shape.

Refer to the lower specification limit of LSL = 1 suggested by [2], we let L = 1.
The MLE of the C; can be C; = (1.5282 — 1)/0.1197 = 4.4127. The high value of
the C; indicates a good process capability for the flow width of the resist in the
hard-bark process. Based on the original sample with 185 observations of flow
width, the 95% PBP and BCP confidence intervals of the model parameters and C;.
are obtained and reported in Table 2. We can find that the obtained PBP and BCP
intervals for each parameter are close. Two bootstrap intervals of C;, recommend
a good quality for the flow width of the resist in the hard-bake manufacturing
process due to two lower limits of Cy, are significantly larger than 1.

The observations of flow width

Figure 3. The histogram of the flow width data in Example 1.

Stage 2: The impact of the sample size on the quality of the confidence interval of Cy:

In this stage, 315 observations are generated from the model obtained in Stage 1
to investigate the impact of the sample size on the quality of the PBP and BCP
intervals of C;. We merge the original 185 observations with the generated ob-
servations. The merged sample has a size of 500. We are interested in studying
how much the length of confidence interval can be reduced when the sample size
increases. The PBP and BCP confidence intervals of C; are evaluated based on the
first 300 and all 500 observations in the merged sample. All computation results
are reported in Table 3.

From Table 3 we can find that the lengths of PBP and BCP confidence intervals
are reduced when the sample size increases. Both the PBP and BCP methods are
competitive for estimating ¢, o and C;. The PBP method outperforms the BCP
method to estimate 7y with a shorter length of confidence interval. Table 3 also
indicates the quality of the PBP, and BCP methods can be significantly improved
when the sample size increases. The BCP method significantly outperforms the
PBP method for evaluating the C; in terms of the length of confidence interval.

Table 2. The 95% bootstrap confidence intervals based on the original sample with n = 185 observations.

PBP BCP
Parameter Lower Limit Upper Limit Lower Limit Upper Limit
¢ 1.2716 1.6886 1.2575 1.6842
0% 0.0839 5.5656 0.0944 5.9333
o 0.0511 0.1932 0.0535 0.1965

CrL 1.4040 13.4726 1.2975 12.7272




Mathematics 2022, 10, 35

13 of 14

Table 3. The 95% bootstrap confidence intervals based on the merged sample with n = 300 and 500.

PBP BCP
n Parameter Lower Limit Upper Limit Lower Limit Upper Limit
300 ¢ 1.4302 1.6886 1.1832 1.5994
v 0.1089 1.8209 0.3820 5.4131
o 0.0588 0.1512 0.0925 0.2001
CrL 2.8738 11.7485 0.9781 6.3928
500 ¢ 1.4595 1.6634 1.2955 1.5825
0% 0.1902 1.5053 0.4523 4.1516
o 0.0734 0.1453 0.0975 0.1784
CL 3.1750 9.0023 1.6642 5.8747

6. Concluding Remarks

In this study, we proposed a maximum likelihood estimation procedure to obtain the
MLEs of the model parameters and PPI. Moreover, the approximate confidence intervals of
the model parameters and PPI are obtained based on the parametric bootstrap methods of
PBP and BCP. The exact Fisher information matrix is derived and we study the weakness
of using the exact Fisher information matrix to obtain an approximate confidence interval
for the model parameters and PPI. Monte Carlo simulations were conducted to evaluate
the quality of the proposed methods. We find that a sample with 250 or 300 is large enough
to obtain the reliable MLEs of the model parameters and PPI. An example about the flow
width of the resist in a hard-bake process of integrated circuit is used to illustrate the
applications of the proposed methods.

The maximum likelihood estimation procedure and the bootstrap method of BCP
ask a big sample for the power-normal distribution to obtain reliable point and interval
estimation results. Bias-correction methods could be helpful to improve the performance
of the proposed maximum likelihood estimation procedure. In the case of small samples,
finding other reliable parameter estimation methods with good estimation performance is
an important issue. Moreover, establishing inference methods with censoring schemes also
are an important issue for the power-normal distribution. All these topics will be studied
in the near future.
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